Opioidergic interactions between striatal projection neurons.

نویسندگان

  • Craig P Blomeley
  • Enrico Bracci
چکیده

Medium spiny striatal projection neurons (MSNs) release opioid neuropeptides, but the role of these neurotransmitters is still poorly understood. While presynaptic inhibition of corticostriatal axons by opioid receptors has been demonstrated using exogenous ligands, the action of synaptically released opioids in the striatum has not been investigated. We performed single and paired whole-cell recordings from rat MSNs while corticostriatal fibers were electrically activated. In single recording experiments, we also activated antidromically the axons of a population of MSNs. Corticostriatal fibers were stimulated once every 10 s and every other stimulation was preceded by 5 antidromic spikes (at 100 Hz). This burst of antidromic spikes produced robust inhibition of evoked corticostriatal responses. This inhibition was not affected by the δ-opioid receptor antagonist SDM25N, but was completely abolished by the μ-opioid receptor antagonist CTOP. Inhibitory effects were maximal (on average 29.6 ± 11.4%) when the burst preceded the corticostriatal stimulation by 500 ms and became undetectable for intervals >2 s. Paired recordings from MSNs located <100 μm apart revealed that, in 30 of 56 (54%) pairs, a burst of five action potentials in one of the MSNs caused significant inhibition (17.1 ± 5.7%) of evoked glutamatergic responses in the other MSN. In 5 of these pairs, reciprocal inhibition of corticostriatal inputs was present. These effects were maximal 500 ms after the burst and were completely blocked by CTOP. Thus, these results reveal a novel, strong opioid-mediated communication between MSNs and provide a new cellular substrate for competitive dynamics in the striatum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory interactions between spiny projection neurons in the rat striatum.

The spiny projection neurons are by far the most numerous type of striatal neuron. In addition to being the principal projection neurons of the striatum, the spiny projection neurons also have an extensive network of local axon collaterals by which they make synaptic connections with other striatal projection neurons. However, up to now there has been no direct physiological evidence for functi...

متن کامل

Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype.

Dopamine is one of the principal neurotransmitters in the basal ganglia, where it plays a critical role in motor control and cognitive function through its interactions with the specific dopamine receptors D1 to D5. Although the activities mediated by most dopamine receptor subtypes have already been determined, the role of the D5 receptor subtype in the basal ganglia has still not been establi...

متن کامل

Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum.

Coordinated near-threshold depolarized states in cortical and striatal neurons may contribute to form functionally segregated channels of information processing. Recent anatomical studies have identified pathways that could support spiraling interactions across corticostriatal channels, but a functional outcome of such spiraling remains to be identified. Here, we examined whether plateau depola...

متن کامل

Dendritic arborizations of the rat substantia nigra pars reticulata neurons: spatial organization and relation to the lamellar compartmentation of striato-nigral projections.

The cerebral cortex provides a major source of inputs to the basal ganglia. As has been well documented, the topography of corticostriatal projections subdivides the striatum into a mosaic of functionally distinct sectors. How information flow from these striatal sectors remains segregated or not within basal ganglia output nuclei has to be established. Electrophysiologically identified neurons...

متن کامل

Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease.

Immunohistochemistry and single-cell RT-PCR were used to characterize the localization of huntingtin and/or its mRNA in the major types of striatal neurons and in corticostriatal projection neurons in rats. Single-label immunohistochemical studies revealed that striatum contains scattered large neurons rich in huntingtin and more numerous medium-sized neurons moderate in huntingtin. Double-labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 38  شماره 

صفحات  -

تاریخ انتشار 2011